
NUMERICAL ANSWERS TO ASSIGNED TUTORIAL PROBLEM SETS FOR CHEM206 FROM KOTZ & TREICHEL'S CHEMISTRY & CHEMICAL REACTIVITY, **6th Ed.**

NOTE: the answers from Ch.13 <u>have not</u> been verified. Please report any errors.

Ch.	Q#	Answer	Units	SFs	Comments
13 13 13	2 2 2				$I_2(s)$: induced dipole - induced dipole CH ₃ OH: hydrogen bonding I_2 & CH ₃ OH: induced dipole - dipole
13 13 13 13	4a 4b 4c 4d				induced dipole - induced dipole hydrogen bonding dipole - dipole induced dipole - induced dipole
13 13	6 6				increasing forces: He < butane < methanol gases at RT / 1atm: He, butane
13	8				HCO ₂ H (formic acid)
13	12	1.99	kJ	3	
13	18				predict bp $CH_4 < CO < NH_3 < SCI_2$
13 13 13 13	20a 20b 20c 20d				increase increases no change increases
13	22	38.5 402	kJ/mol K		= ΔH_{vap} , via Clausius-Clapeyron equation = T at which P _{vap} = 760 mm Hg (via Clausius-Clapeyron Eqn) = 129°C, while the actual boiling point is 126°C (close!)
13 13	40a 40b				induced dipole - induced dipole hydrogen bonding
13	43	60.	mol	2	only 17mol is present \rightarrow all will evaporate (see solutions manual)
13 13 13	44 44 44				ICI (polar molecule) krypton (greater molar mass) ethanol (hydrogen bonding)
13 13 13 13	47 47 47 47	350 84	mm Hg °C	2 2	(note: also in solutions manual) ethanol CS ₂ 46°C; C ₂ H ₂ OH 78°C; C ₇ H ₁₆ 99°C
13	47				CS ₂ gas; C ₂ H ₂ OH gas; C ₇ H ₁₆ liquid

Ch.	Q#	Answer	Units	SFs	Comments			
13	52				increasing forces: $CO_2 < CH_3CI < HCO_2H$			
13	60	9.12x10 ⁻⁸ 5.49x10 ¹⁹	mol/L atoms/m ³	3 3	using ideal gas law using definition of mole, & $L \rightarrow m^3$ conversion			
13	72				1-propanol (H-bonding) > methyl ethyl ether (dipole-dipole)			
13	76	The volatile liquid has a low boiling point. Warming the lower compartment in your hands increases the number of molecules in the vapour phase, raising the vapour pressure acting on the liquid. The connecting tube reaches to the bottom of the lower chamber (a little hard to see), so the extra pressure forces the liquid up the tube into the upper chamber.						
13	86a 86b	refer to the CD-ROM There are three C=O groups that are highly polar and can interact with the polarized H atoms of water (C=O are hydrogen bond acceptors). In addition, there are two NH groups (both donor & acceptor) and one –OH group (both donor and acceptor) that can participate in hydrogen bonding with water.						