NUMERICAL ANSWERS TO ASSIGNED TUTORIAL PROBLEM SETS FOR CHEM206 FROM KOTZ & TREICHEL'S CHEMISTRY & CHEMICAL REACTIVITY, 6th Ed.

NOTE: these answers have NOT been verified. Please report any errors.

Ch.	Q#	Ans.	Units	SFs	Comments
15	4	4 3.0x10 ⁻⁴ mol/(L·min) 2		rate of appearance of ammonia	
15	10a 10b 10c				Rate = k[NO] ² [Br ₂] if [Br ₂] is tripled, rate will triple if [NO] decreases by 1/2, rate will decrease by ×1/4
15	12a 12b 12c 12d	0.136 6.32 0.159	mol/(L⋅s) L²/(mol²⋅s) mol/(L⋅s)	3 3 3	In first 2 data sets: $[H_2]$ is constant; $[NO]$ is ×1/2 rate decreases by factor of 4 \Rightarrow rxn = 2 nd order in NO In 2 nd & 3 rd data sets: $[NO]$ constant; $[H_2]$ doubled rate also doubles \Rightarrow rxn is 1 st order in H ₂ Rate = k $[NO]^2[H_2]$ = rate of formation of N ₂ = rate constant, k = initial rate of reaction calculated using rate law
15	14a				1 st 2 data sets: [CO] constant; [NO ₂] halved rate also goes down by factor of 2 \Rightarrow 1 st order in NO ₂ Sets 1 & 3: [NO ₂] constant; [CO] doubles rate doubles \Rightarrow rxn is 1 st order in NO ₂
	14b 14c	1.9 2.0x10 ⁻⁷	L/(mol·h) mol/(L·h)	2 2	= rate constant, k = initial rxn rate calculated using rate law
15 15 15	16a 16b 16c	4.2x10 ⁶ 0.0044	L²/(mol ^{2·} min) mol/L	2 2	rate = $k[H_2PO_4^{-}][OH_2^{-}]^2$ = k, calculated using initial concentrations & rate = initial conc. $H_2PO_4^{-}$ required for rate=0.0020 M/min
15	18	0.00557	min ⁻¹	3	= k, calculated using integrated 1st order rate law
15	22	0.0490	min	3	= time required to drop [NO ₂] from 2.00 to 1.50 mol/L
15	24	580	S	2	= time required to decompose 3/4 of sample; 1/4 remains
15	28	150	min	2	= time required for 7.50mg \rightarrow 0.25mg; using k=0.023 min ⁻¹
15	30	4.3	mg	2	remaining after 1.0 day; using $k = 0.26 d^{-1}$
15	38	0.025	min ⁻¹	2	= k,= -slope of linear graph: In[HOF] vs time (1 st order)
15	42	85	kJ/mol	2	= $E_a \dots rxn 3 \times faster at 310K vs 300K; use Arrenhius' eqn$
15	44	270	kJ/mol	2	= E_a calculated using Arrhenius' eqns for 2 T's (2 k's)
15	46a 46b				endothermic yes, rxn occurs in two steps

Ch.	Q#	Ans.	Units	SFs	Comments
15	48a 48b 48c				rate = $k[CI][ICI]$ rate = $k[O][O_3]$ rate = $k[NO_2]^2$
15	50a 50b 50c 50d				add up 2 rxns & cancel species occurring on both sides gives overall rxn: $NO_2 + CO \rightarrow NO + CO_2$ both steps are bimolecular rate = k[NO ₂] ² NO_3 is an intermediate
15	54a 54b 54c				$(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3CBr + HBr$ step 1, the slow step, is rate-limiting (rate-determining) rate = k[(CH_3)_3CBr]
15	62a 62b 62c 62d	2x10 ⁻⁴ 3x10 ³	s ⁻¹ S	1 1	1 st order in CH ₃ NC: rate = k[CH ₃ NC] In[CH ₃ NC] _t = In[CH ₃ NC] _o - kt = k = -slope (slope estimated from graph) = [] remaining after 10000s, starting with 0.0166 mol/L initial [] from y-intercept of graph: [] _o = $e^{intercept}$
15	66a 66b	0.59 75	mg h	2 2	using k = 0.18 h ⁻¹ (from $t_{1/2}$) & integrated 1 st order rate law using integrated 1 st order rate law
15	70	103	kJ/mol	3	= E_a = -slope of graph of lnk vs. 1/T
15	72a 72b	75.8 0.33	s unitless	3 2	when 3/4 of PH ₃ gone, 1/4 remains; 2 half-lives passed. NOTE: 2SF if treat as <u>exactly</u> 1 min; otherwise: 1SF $k = 0.0183 \text{ s}^{-1}$; use 1 st order integrated rate law to calculate [PH ₃] _t /[PH ₃] _o
15 15 15	73 73a 73b	also see solutions manual			2NO(g) + Br ₂ (g) → 2BrNO(g) 1: termolecular 2: step1=bimolecular, step2=bimolecular 3: step1=bimolecular, step2=bimolecular mechanism 2: intermediate = Br ₂ NO(g) mechanism 2: intermediate = N $O(g)$
15	73c				
15	73d				Assuming step1 = RLS for each mechanism, all predicted rate equations (rate laws) are different. Mechanism 1: 2^{nd} order in NO, 1^{st} order in Br ₂ Mechanism 2: 1^{st} order in both NO & Br ₂ Mechanism 3: 2^{nd} order in NO, zero order in Br ₂ If assume 2^{nd} step is slow, will get different results
15	76				slowest rxn has smallest k: rxn (d) fastest rxn has largest k: rxn (c)
15 15	79 79	also see solutions manual 4.76 min 3SF		3SF	must recognize that: $t_{90C}/t_{100C} = k_{100C}/k_{90C}$ <i>i.e.</i> , shorter rxn time implies faster rate constant and time required to complete a rxn is inversely proportional to k (from thinking about form of integrated rate law) Then: Arrhenius' eqns for both T's, combine to solve for E _a

Ch.	Q#	Ans.	Units	SFs	Comments			
15	82				After 1 $t_{1/2}$: P_{SO2CI2} = 12.5 mmHg = P_{SO2} = PCI ₂ (by stoich.) So P_{tot} = 12.5 + 12.5 + 12.5 = 38 mmHg (to 2SF) To find Ps at 720min: 1 st use $t_{1/2}$ to find k= 0.00283min ⁻¹ Using 1 st order integrated rate law, k & P_{SO2CI2} , solve for P_{SO2CI2} after 720 min = 3.3 mmHg By stoich.: P_{SO2} = P_{CI2} = P_{SO2CI2} consumed = 22 mmHg So, P_{tot} after 720 min = 3.3 + 22 + 22 = 47 mmHg			
15	84a	Chemists use initial rates because the presence of products can affect the mechanism of the reaction, and also because the reverse reaction can begin to re-produce reactants (which would make it look like the forward reaction is slowing down more than it is).						
	84b	3.6×10 ⁻⁴	mol/L∙min	2SF	= rate			
15	88	add up ster	os to get overall: 2	$2O_3 \rightarrow 3O_2$. Cl atoms regenerated (∴catalyst). ClO = intermediate.			
15	90a 90b 90c 90d	Incorrect. Reactions are faster at a higher temperature because the fraction of molecules with higher energies increases. Correct. Correct. Incorrect. A catalyst provides a different pathway with a lower activation energy for the rxn.						
15	94	Graphs: same net E change for rxns; DIFFERENT E_a 's; catalyzed rxn has LOWER activation E						
15	98a 98b 98c	The stoichiometric coefficient of a reactant in an elementary step is the order of the reaction for that reactant in that step. Rate = $k[NO_3^-][CO]$ No. Only in the two-step mechanism is there oxygen-atom exchange between NO ₂ molecules. If CO reacts directly with NO ₂ , the CO ₂ can have either ¹⁶ O or ¹⁸ O, and the product NO						

molecules will be either $N^{16}O$ or $N^{18}O$.