NUMERICAL ANSWERS TO ASSIGNED TUTORIAL PROBLEM SETS FOR CHEM206 FROM KOTZ & TREICHEL'S CHEMISTRY & CHEMICAL REACTIVITY, **6th Ed.**

NOTE: the answers from Ch.16 have <u>not</u> been verified. Please report any errors.

Ch.	Q#	Answer	Units	SFs	Comments
16	2a				$K = [O_3]^2$ and $K_p = (PO_3)^2$ $[O_2]^3$ $(PO_2)^3$
	2b				$K = [Fe(CO)_{5}] \text{ and } K_{p} = (P_{Fe(CO)_{5}})$ $[CO]^{5} (P_{CO})^{5}$
	2c				$K = [NH_3]^2[CO_2][H_2O]$ and $K_p = (P_{NH_3})^2(P_{CO_2})(P_{H_2O})$
	2d				$K = [Ag^+]^2[SO_4^{2-}]$ and no K_p since no gases involved
16	4	3800	unitless	2	= Q, rxn quotient. Q>K, so rxn not yet at eqm. [NO ₂] will increase as system proceeds toward equilibrium
16	6	5.0x10 ⁻⁴	unitless	2	= Q. Q <k, at="" eqm.="" form="" more="" not="" p="" proceed="" products<="" right="" rxn="" to="" will="" yet=""></k,>
16	8	279	unitless	3	= K, based on concentrations (i.e., K_c).
16	10a 10b	1.6 0.028	mol	2 2	= K_c moles of CO present at eqm; moles of water is same; in 2L use eqm expression and ICE table to solve for x (x=0.014 mol/L)
16	14	1.7x10 ⁻³	mol	2	= [C ₅ H ₉ CH ₃] at eqm; [C ₆ H ₁₂]=0.014
16	16a	0.0636	moles	3	= moles NO_2 at eqm
	16b	18.8	%	3	K expression & ICE tablesolve for x using quadratic equation percent of N_2O_4 dissociated at eqm
16	18	4x10 ⁻⁴	g	1	amount of I ₂ remaining in water layer at eqm
16	20				second equation has been reversed and multiplied by $\frac{1}{2}$ so: $K_2 = \frac{1}{(K_1)^{\frac{1}{2}}}$
16	24	2.4	unitless	2	= eqm constant for net rxn: add rxns \Rightarrow multiply K's to find net K
16	26a 26b 26c 26d	(rxn removing so decreasing to	me NOBr will sh emperature will	reach eqn hift eqm to shift eqm t	n…more reactants at new eqm) left

Ch.	Q#	Answer	Units	SFs	Comments
16	28	(endothermic	d: rxn consume fwd rxn) thus e NH₄SH has no e	qm "shifts	
			a product) caus S, a product, ca	•	shift left. to right, increasing <i>P</i> NH₃
16	30a 30b	0.041 590	unitless unitless	2 2	= $K_{new} = (K_{original})^{\frac{1}{2}}$ original equation multiplied by $\frac{1}{2}$ = $K_{new} = 1/K_{original}$ original equation reversed
16	32	0.0273	М	3	= [CCl ₄] _{eqm}
16	34	54	unitless	2	= eqm constant
16	36ab 36c	2.8x10-4 Use ICE table 0.25 0.102	unitless e…take square M M	2 root of bot 2 3	 = Q; Q<k, at="" equilibrium;="" is="" li="" not="" proceed="" right.<="" rxn="" so="" system="" will=""> th sides of K expression, & solve for x (= conc. decrease for N₂) =[N₂]_{eqm} = [O₂]_{eqm} =[NO]_{eqm}note 3 SF because of SF rules for adding </k,>
16	40a	The addition	of a product, CC	D, will shift	t the equilibrium to the left.
	40b	Use ICE table 0.211 1.039 0.039	e & K expression M M M	n solve for 3 4 2	r x (= conc. decrease for COBr ₂) with quadratic formula =[COBr ₂] _{eqm} (using SF rules for adding) =[CO] _{eqm} =[Br ₂] _{eqm}
	40c	57.1 16	% %	3 2	 % COBr₂ decomposed BEFORE adding CO new % COBr₂ decomposed Thus, adding CO decreased the amount of COBr₂ decomposed.
16	44	0.116 0.0387 0.0774 2.31x10 ⁻⁴	atm atm atm unitless	3 3 3 3	= $P_{tot} = P_{NH3} + P_{CO2}$ assume container was initially evacuated = $P_{CO2} = \frac{1}{3} P_{tot}$ because of stoichiometry = $P_{NH3} = 2 P_{CO2}$ because of stoichiometry = K_p
16	46a	2.3x10 ⁻⁴ 4.6x10 ⁻⁴ 84	M M %	2 2 2	 = x = amount of dimer formed = 2x = amount of acetic acid converted to dimer = % acetic acid converted to dimer
	46b	Formation of	hydrogen bonds	s (to make	e dimer) is exothermic \therefore \uparrow temperature will shift eqm to left.
16	48	Use P _{N2O4} = 0.40 1.1	P _{tot} - P _{NO2} in K atm atm	expression 2 2	n & solve for $P_{NO2} \dots$ = P_{NO2} = P_{N2O4}
16	50a 50b	2.1x10⁵ -199.9	unitless kJ	2 4	 = Q; Q<k equilibrium<="" forward="" li="" proceed="" reach="" rxn="" so="" to="" will=""> = ∆H°; exothermic forward rxn. Increasing T will shift eqm to left. The product concentrations will decrease. </k>

Ch.	Q#	Answer	Units	SFs	Comments
16	54a	0.0496 0.030 0.020 0.60	M M M unitless	3 2 2 2	=[SO ₂ Cl ₂] _o sub into K expression; use quadratic formula = x = [SO ₂] _{eqm} = [Cl ₂] _{eqm} =[SO ₂ Cl ₂] _{eqm} = fraction SO ₂ Cl ₂ dissociated
	54b	0.0188 0.025 0.030 0.025 0.50	M M M unitless	3 2 2 2 2	= [Cl ₂] _o sub into K expression; use quadratic formula = x = [SO ₂] _{eqm} = [Cl ₂] _{eqm} =[SO ₂ Cl ₂] _{eqm} = fraction SO ₂ Cl ₂ dissociated
	54c				e addition of $Cl_2(g)$, a product, would shift the equilibrium to the ese calculations.
16	56	18.5	g	3	= mass of CaCO ₃ . Found by finding P_{CO_2} = 3.87 atm & using ideal gas law to calculate moles CO_2 then rxn's stoichiometry to find moles CaCO ₃
16	57	1.7x10 ¹⁸	O atoms	2	see solutions manual First: convert K_p to K_c (more convenient to work with) $K_c = 8.12 \times 10^{-13}$ Use K and ICE table, & use quadratic formula OR approximation To solve for x = 1.4×10^{-7} find [O] = $2 \times$ use molarity to calc. moles of O atomsconvert to # atoms with Avogadro's #
16	60a 60b 60c	0.013 1.16 0.013 12 45	unitless atm mol/L g %	2 3 2 2 2	= K _c = P _{CO2} = K _c = [CO ₂] = mass CaCO ₃ decomposedfound via stoichiometry. = % undecomposed
16	63a 63b 63c 63d 63e	true	constant (K) for a		lways dependent on temp. Siprocal of K for the reverse rxn
16	66	•	amic equilibrium		the rate of evaporation is greater than the rate of condensation. At
16	68	ice melted, t isolated co solid → liqu Expt: if add liquid phase	hen T rises as m mpartment would uid at same rate d a D ₂ O (heavy v e would continue	nore heat g d it stay at as molecu water) ice e to increa	absorb heat from surr. T of ice/water mix remains at 0°C until all gained from surr (not at 0°C). Only if beaker was in perfectly to 0°C, equilibrated. Eqm for this mixture: molecules moving from laules moving from liquid to solid; quantity of ice will not change. cube to some $H_2O(I)$, eqm would be attainedamount of D_2O in se because of the dynamic nature of eqm exchange of easure D_2O content of the liquid to prove "dynamic" eqm.

Ch.	Q#	Answer	Units	SFs	Comments		
16	 70a	[B] will imme	diately increase	, and the t	blue colour will become darker.		
	70b	Db The reaction equilibrium will shift to the side with fewer molecules (because the flask size					
		halved, caus	ing a sudden in	crease in p	pressure). Thus, it will shift toward the blue molecules, and the		
		blue colour v	vill become eve	n more pro	onounced.		
16	72a	142	unitless	3	= K [Fe ³⁺] does not go to zero		
10		1.12	anniooo	U	$[Fe^{3^+}] = [SCN^-]$ at equilibrium, & these ions have highest conc.		
10	72b				$ 1 \circ - 1000$ $ a \circ 0000$		
10	72b 72c	2.64x10 ⁻³	М	3	$= [Fe^{3+}]_{eam}$		
10		2.64x10 ⁻³ 3.64x10 ⁻³	M M	3 3			