NUMERICAL ANSWERS TO ASSIGNED TUTORIAL PROBLEM SETS FOR CHEM206 FROM KOTZ & TREICHEL'S CHEMISTRY & CHEMICAL REACTIVITY, 6th Ed.

NOTE: the answers from Ch.17 have not been verified. Please report any errors.

Ch.	Q#	Comments
17	2a 2b 2c	NH₄ ⁺ ammonium ion H₂CO₃ carbonic acid HBr hydrobromic acid
17	4a	HClO ₄ + H ₂ O → H ₃ O ⁺ + ClO ₄ ⁻ acid A base B conj.acid of B conj.base of A
	4b	$NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$ acid A base B conj.base of A conj.acid of B
	4c	$HCO_3^- + H_2O \rightarrow CO_3^{2-} + H_3O^+$ acid A base B conj.base of A conj.acid of B
17	8 8a 8b 8c	Brønsted acidBrønsted baseconjugate baseconjugate acid CH_3CO_2H C_5H_5N $CH_3CO_2^ C_5H_5NH^+$ $HSO_4^ N_2H_4$ SO_4^{2-} $N_2H_5^+$ $[Al(H_2O)_6]^{3+}$ $OH^ [Al(H_2O)_5(OH)]^{2+}$ H_2O
17	10	3.3×10^{-4} M = [OH ⁻]the solution is basic (pH >7)
17	16a 16b 16c 16d	HF strongest acid (largest K _a); HPO ₄ ²⁻ weakest (smallest K _a) F ⁻ strongest acid (HF) has weakest conjugate base weakest acid (HPO ₄ ²⁻) has strongest conjugate base
17	22a 22b 22c	NaNO ₃ \rightarrow no effect on pH. Neither ion is acidic or basic. NaC ₇ H ₅ O ₂ \rightarrow basic solution. Na ⁺ has no effect on pH, but C ₇ H ₅ O ₂ ⁻ is conjugate base of weak acid HC ₇ H ₅ O ₂ so deprotonates water to some degree & makes solution basic. Na ₂ HPO ₄ \rightarrow basic solution. Na ⁺ has no effect on pH, but HPO ₄ ²⁻ is conjugate base of weak acid H ₂ PO ₄ so deprotonates water to some degree & makes solution basic.
17	28	acetic acid $pK_a = -log(1.8 \times 10^{-5}) = 4.74$. Acid with smaller pK_a is stronger (larger K_a). Thus, chloroacetic acid is stronger.
17	32	$K_a = 10^{-pKa} = 1.1x10^{-4}$. $K_b = K_w/K_a = 8.9x10^{-11}$
17	36a 36b 36c	H_2S stronger acid than HCO ₃ ⁻ ; thus, eqm lies to right. HSO ₄ ⁻ stronger acid than HCN; thus eqm lies to left HSO ₄ ⁻ stronger acid than CH ₃ CO ₂ H; eqm lies to left
17	38a 38b	$H_3O^{+}(aq) + OCI^{-}(aq) \iff H_2O(I) + HOCI(aq)$ Solution should be acidic because the significant species remaining in the solution upon completion of the reaction is HOCI, a weak acid.

Ch.	Q#	Comments
17	42	Given eqm pH data: $[H_3O^+] = 10^{-pH} = 0.011M = [CICH_2CI_2^-]$ sub into K expression: find K _a = 1x10 ⁻³ .
17	46a	$[H_3O^+] = 10^{-pH} = 8.1 \times 10^{-11} \text{ M}$ $[OH^-] = K_w / [H_3O^+] = 1.2 \times 10^{-4} \text{ M}$
	46b	$K_b = 1.0 \times 10^{-6}$, calculated using equilibrium treatment this is a moderately weak base.
17	50	initial $[C_6H_5OH] = 0.0166$ M; use K _a & ICE table can use approximation OR quadratic formula to solve for x x = 1.47x10 ⁻⁶ M = $[C_6H_5O^-] = [H_3O^+] \Rightarrow pH = 5.83$ (2SF in K _a)
17	52	use K _a &ICE table…but approximation is NOT valid (K is too big) use quadratic formula $\Rightarrow x = 8.4x10-3 \text{ M} = [BH^{+}] = [OH^{-}]$ thus: eqm [B] = 0.15 - x = 0.14 M
17	56	$[F^{-}] = [H_3O^{+}] = 10^{-2.3} = 0.0050 \text{ M} \text{ at eqm}$ use K _a & ICE table solve for x = [HF] = 0.035 M thus: initial [HF] = 0.035 M + 0.0050 M = 0.040 M
17	60	Find $K_b = K_w / K_a = 7.7 \times 10^{-10}$ Use ICE table & $K_bapproximation ok$ $\Rightarrow x = [CH_3CH_2CO_2H] = [OH^-] = 8.8 \times 10^{-6} M$ pH = 14 - pOH = 8.94 \Rightarrow [H ₃ O ⁺] = 1.1 × 10 ⁻⁹ M
17	64a 64b 64c	pH = 7; reacted equimolar amounts of strong acid & strong base pH > 7; predominant ion in soln will be HCO_2^- , a weak base pH < 7; predominant ion in soln will be $C_2O_4^{-2-}$, a weak base
17	66	pH will be determined by the first ionization of the acid use K _{a1} and ICE table for loss of first proton only can use approximation \Rightarrow x = [H ₃ O ⁺] = 1.4x10 ⁻³ M \Rightarrow pH = 2.86
17	70a 70b 70c	BCI_3 is a Lewis acid H_2NNH_2 is a Lewis base Ag^+ is a Lewis acid, NH_3 is a Lewis base
17	74	The ion with the more highly charged metal ion, $V(H_2O)_6^{3+}$, should be the stronger acid. The stronger interaction between the metal ion and the coordinated water molecules polarizes the O-H bonds more, which makes the δ^+ H more attractive to nearby free water molecules & easier to lose.
17	76	Ethylenediamine can act as a proton acceptor (Brønsted base) and as an electron pair donor (Lewis base)
17	78a 78b 78c 78d	NH_4^+ might lead to an acidic soln; $CO_3^{2^-} \& S^{2^-}$ might lead to a basic solution in water Br and CIO_4^- have no effect on the pH of a solution S^{2^-} is the strongest base $CO_3^{2^-}(aq) + H_2O(l) \longrightarrow HCO_3^-(aq) + OH^-(aq)$ $S^{2^-}(aq) + H_2O(l) \longrightarrow HS^-(aq) + OH^-(aq)$

Ch.	Q#	Comments
17	82a 82b 82c	HCO_3^- is a weaker acid than HSO_4^- , so the equilibrium lies predominantly to the left. HSO_4^- is a stronger acid than CH_3CO_2H , so the equilibrium lies predominantly to the right. $Co(H_2O)_6^{2+}$ is a weaker acid than CH_3CO_2H , so the equilibrium lies predominantly to the left.
17	84	Calculate [OH ⁻] = 0.013 M; pOH = 1.87 ⇔ pOH = 12.13
17	86a 86b	$K_b = K_w / K_a = 4.3 \times 10^{-4}$ The acid is placed directly below Ni(H ₂ O) ₆ ²⁺ . HPO ₄ ²⁻ is a weaker acid than C ₄ H ₉ NH ₃ ⁺ . PO ₄ ³⁻ is a stronger base than C ₄ H ₉ NH ₂ .
17	92	Find $K_a = 4.8 \times 10^{-3}$ from p $K_a \Rightarrow$ thus $K_b = 2.1 \times 10^{-12}$ Use K_b and ICE table, & approximation $\Rightarrow x = [OH] = 4.6 \times 10^{-7} M \Rightarrow pH = 14 - pOH = 7.66$
17	94i 94ii 94iii	(d) and (e) are acidic solutions (a), (b) and (f) are basic solutions (d) CH_3CO_2H is a stronger acid than NH_4^+
17	96	use pH to find $[C_6H_4NO_2^+] = [H_3O^+] = 2.0x10^{-3} M$ and initial $[C_6H_5NO_2] = 0.14 M$ calculated from data use ICE table & sub into K _a expression $\Rightarrow K_a = 3.0x10^{-5}$
17	98	pH determined by first ionization of base (polyprotic) Use K_{b1} & ICE table for accepting 1 st protonapproximation ok $\Rightarrow x = [OH] = 1.2x10^{-4} M \Rightarrow pH = 14 - pOH = 10.07$
17	102	Desired net rxn: $NH_3(aq) + H_3O^+(aq) \rightleftharpoons H_2O(\ell) + NH_4^+(aq)$ Can think of it as adding rxn equations for: ① rxn of NH_3 with $H_2O \& @$ rxn of OH^- with H_3O^+ When add reactions, must multiply equilibrium constants to find net equilibrium constant So, $K_{net} = (K_{b_NH3})(1/K_w) = 1.8 \times 10^9$
17	110	H_2SeO_4 should be the stronger acid. In oxoacids, the acid with more oxygen atoms experiences a stronger inductive effect, and has more charge delocalization (due to larger # of resonance structures) in the conjugate base. Thus, the conjugate base is more stable (less basic), which corresponds to the acid form being stronger. Experiment to show this: measure the pH of a solution of each acid, at same concentration, e.g., 0.1 M. The solution containing the stronger acid will have the lower pH.
17	112	highest concentration: $H_2O > H_2C_2O_4 > HC_2O_4^- = H_3O^+ > C_2O_4^{2-} > OH^-$ lowest concentration.
17	114a 114b	The increasing acidity as Br atoms replace H atoms is due to the inductive effect of the Br atoms (which results from their higher electronegativity). The solution containing the strongest acid (Br ₃ CCO ₂ H) will have the lowest pH, and the solution containing the weakest acid (CH ₃ CO ₂ H) will have the highest pH.
17	116	Dissolved CO ₂ gas (mainly) or dissolved metal ions can cause bottled water to be slightly acidic.