
NUMERICAL ANSWERS TO ASSIGNED TUTORIAL PROBLEM SETS FOR CHEM206 FROM KOTZ & TREICHEL'S CHEMISTRY & CHEMICAL REACTIVITY, **6**th **Ed**.

NOTE: the answers from Ch.18 have not been verified. Please report any errors.

Ch.	Q#	Answer/Comments
18	2a 2b 2c	pH increases ($C_2O_4^{2^-}$ is a weak base; what you get when lose 2 H+ from oxalic acid) pH decreases (NH_4^+ , a weak acid, is being added to a solution containing strong acid) no change (Na^+ is not acid or base; CI ⁻ is essentially not basic since is conjugate base of strong acid)
18	4	$[CH_3CO_2] = 0.190 \text{ M}; \text{ use ICE table and K}_a \text{ expression; solve for } x = [H_3O^+] = 1.4x10^{-5} \text{ M} \Rightarrow pH = 4.85$
18	8a 8b	$[CH_3CHOHCO_2H] = 0.0491 \text{ M}$; use ICE table & K _a expression; solve $x = [H_3O^+] = 2.9x10^{-4} \text{ M} \Rightarrow pH = 3.54$ The buffer solution has a higher pH than the original lactic acid solution (pH = 2.43) because a weak base (CH ₃ CHOHCO ₂ ⁻) was added to the lactic acid solution.
18	10	$[H_3O^+] = 10^{-pH} = 1.0 \times 10^{-9} \text{ M} = \text{eqm value}$; use K_a expression, solve for $[NH_4^+] = 0.18 \text{ M} \Rightarrow 4.8 \text{ g } NH_4\text{Cl}$ total
18	14a 14b	pK _a = 7.21; calculate moles of Na ₂ PO ₄ (=0.03999mol; conj.base) and KH ₂ PO ₄ (=0.009994mol; conj.acid) use Henderson-Hasselbalch equation ("HH. eqn"): solve for pH of buffer = 7.81 Given pH, use HH. eqn solve for ratio of conj.base to conj.acid = 1.3 / 1 Given # moles of H ₂ PO ₄ ⁻ = 0.03999mol, calculate 0.032 mol H ₂ PO ₄ ⁻ To prepare: need 4.3g total of KH ₂ PO ₄ but already have 1.360g in buffer \Rightarrow need to add 2.9g more.
18	16a 16b 16c	$\begin{array}{ll} H_{3}PO_{4} / NaH_{2}PO_{4} & pK_{a} \text{ of } H_{3}PO_{4} = 2.12 \\ NaH_{2}PO_{4} / Na_{2}HPO_{4} & pK_{a} \text{ of } H_{2}PO_{4}^{-} = 7.21 \\ Na_{2}HPO_{4} / Na_{3}PO_{4} & pK_{a} \text{ of } HPO_{4}^{2-} = 12.44 \\ The best choice here is (b), sodium dihydrogen phosphate-sodium hydrogen phosphate buffer. \end{array}$
18	22	using HH. eqn: buffer's initial pH = 9.22 Calculate moles of NH ₃ (0.0135mol) and NH ₄ ⁺ (0.0146mol) in buffer and NaOH added (0.00200mol) Note total volume after adding base = 0.100L Reaction: OH ⁻ will consume NH ₄ ⁺ to yield water and NH ₃ ; now have 0.0126mol NH ₄ ⁺ , 0.0155mol NH ₃ New pH = 9.34; change in pH was 0.12 pH units, increased because added base
18	24a 24b 24c	$[C_6H_5CO_2H]$ = 0.0192 M initially; use ICE table & K _a to solve for x = $[H_3O^+]$ = 0.0011 M ⇒ pH = 2.96 Reaction: add known #moles base: calculate how much $C_6H_5CO_2H$ is consumed & $C_6H_5CO_2^-$ formed New initial $[C_6H_5CO_2^-]$ = 0.0163M; and realize system will reequilibrate. Calculate K _b = K _w /K _a = 1.6x10 ⁻¹⁰ ; use ICE table & K _b to solve for x = $[OH^-]$ = 1.6x10 ⁻⁶ M Then, $[H_3O^+]$ = K _w / $[OH^-]$ = 6.2x10 ⁻⁹ M; note $[Na^+]$ = $[C_6H_5CO_2^-]$ = 0.0163 M pH = 8.21
18	26a 26b 26c	$[C_6H_5NH_2] = 0.180 \text{ M}$ based on stoichiometry with HCI total volume = 0.0507 L; so new $[C_6H_5NH_2] = 0.0887 \text{ M}$ find K _a = K _w /K _b = 2.5x10 ⁻⁵ ; use ICE table & K _a to solve for x = $[H_3O^+] = 0.0015 \text{ M}$ pH = 2.83
	_00	

Ch.	Q#	Answer/Comments
18	30a	initial pH: use K _a and ICE table to solve for x = $[H_3O^+]$ = 4.5x10 ⁻⁶ M \Rightarrow pH = 5.35
	30b	Half-way to the equivalence point: have added $\frac{1}{2}$ the stoichiometric quantity, so [HCN] = [CN-] thus, the pH we would observe would be equal to the pK _a of the weak acid, = 9.40 → this is the inflection point in the buffer region of the titration curve
	30c	When 95% of the NaOH has been added: have converted 95% of HCN to CN- thus: have 0.0012 mol CN ⁻ and $6x10^{-5}$ mol HCN present in the same volume of solution so: pH = pK _a + log(CN ⁻ /HCN) = 10.7 by using moles instead of []'s because V's would cancel out
	30d	volume NaOH added to reach equivalence point = 17 mL
	30e	At equivalence point: CN^{-} equilibrates with water [CN^{-}] starts at 0.030 M (remember new total V) Find K _b = K _w /K _a = 2.5x10 ⁻⁵ ; use ICE table & K _b to solve for x = [OH^{-}] = 8.7x10 ⁻⁴ M pH = 14 – pOH = 10.94
	30f	alizarin yellow R (from Zumdahl's table 15.8) would be suitable since starts turning orange at pH 11
	30g	when have added 105% required NaOH: pH depends primarily on the excess OH- added. Excess = 5% molar excess of OHie calculate 5% of (#moles of HCN) to find extra moles of OH ⁻ = $6x10^{-5}$ mol OH ⁻ excess. Note we also need to figure out what total volume of NaOH solution added to get to this point. Then, calculate pH of solution with $6x10^{-5}$ mol/0.042 L OH ⁻ \Rightarrow pH = 14 – pOH = 11.17
18	32	titrationpH at equivalence pointpossible indicator HCO_3^- titrated with HCIpH < 7 (about 3-4)
18	36a 36b 36c 36d	soluble (most nitrate salts are soluble) insoluble (most hydroxide salts are insoluble) soluble (most chloride salts are soluble) insoluble (most sulfide salts are insoluble)
18	38a 38b 38c	PbSO ₄ (s) \rightleftharpoons Pb ²⁺ (aq) + SO ₄ ²⁻ (aq) K _{sp} = [Pb ²⁺][SO ₄ ²⁻] BaF ₂ (s) \rightleftharpoons Ba ²⁺ (aq) + 2F ⁻ (aq) K _{sp} = [Ba ²⁺][F] ² Ag ₃ PO ₄ (s) \rightleftharpoons 3Ag ⁺ (aq) + PO ₄ ³⁻ (aq) K _{sp} = [Ag ⁺] ³ [PO ₄ ³⁻]
18	42	$[Ca^{2+}] = 0.0140 \text{ M} \Rightarrow \text{ K}_{sp} = [Ca^{2+}][OH^{-1}]^2 = 5.5 \times 10^{-5}$
18	44	pOH = 1.32; [OH ⁻] = 0.048 M; [Ca ²⁺] = ½ [OH ⁻] = 0.024 M; \Rightarrow K _{sp} = 5.5x10 ⁻⁵
18	46	$K_{sp} = [Au^+][CI^-] = x^2 \ \Leftrightarrow x = 4.5x10^{-7} \ M = [Au^+]$
18	50	$K_{sp} = [Pb^{2^+}][SO_4^{2^-}] = x^2 \Rightarrow x = 1.6x10^{-4} M = [Pb^{2^+}] = concentration of dissolved PbSO_4 since 1:1 thus: use that conc. to find mass of lead sulfate dissolved = 12 mg in 1 L$
18	52a 52b 52c 52d	AgSCN note: can directly compare $K_{sp}s$ when compounds have same ratios of cations to anions SrSO ₄ PbI ₂ (caution: solubility must be calculated in order to predict thisbecause $K_{sp}s$ depend on how many of each ion are involvedcannot simply compare $K_{sp}s$ to compare AgI and PbI ₂ !!) CaF ₂

 $K_{sp} = 5.4 \times 10^{-13} = [Ag^+][Br^-] = x^2$ 18 54 ...where solubility of AgBr in pure water = 7.3×10^{-7} mol/L, & note 1Br⁻, 1Ag⁺ per AgBr... For a solution of 0.0065M Br-, helpful now to use ICE table along with K_{sp}... $K_{sp} = 5.4 \times 10^{-13} = x(0.0065 + x)$ with approximation = 0.0065x Solve for $x = 8.3 \times 10^{-11}$ mol/L, = [Ag⁺] but also = solubility... Note much lower now! Common-ion effect. Ag₂CO₃ 18 58a 58b PbCO₃ 58c AgCN $Q = 2.4 \times 10^{-9} < K_{sp}$ therefore NiCO₃ will not precipitate 18 60a $Q = 2.4 \times 10^{-7} > K_{sp}$ therefore NiCO₃ will precipitate 60b $[OH^{-}] = 0.0025 \text{ M}; [Mg^{2+}] = 0.075 \text{ M}; Q = 4.7 \times 10^{-7} > K_{sp}$ therefore Mg(OH)₂ will precipitate 18 64 when adding two sequential equilibrium reactions: add the reaction equations, but multiply the K's 18 66 So: net rxn is Agl(s) + 2 CN (aq) $\overrightarrow{\leftarrow}$ Ag(CN)₂ (aq) + I (aq) $K_{net} = K_{sp}$ (for AgI) × $K_{formation}$ (for Ag(CN)²⁻) = 480 18 74a pH > 7. The solution will contain the conjugate base of the weak acid (and counter ion...) 74b pH > 7. The solution will contain the NH₃/NH₄⁺ pair (a buffer!) 74c pH = 7. The solution will contain neutral ions. 74d pH = 7. The solution will contain neutral ions. For CaF₂ to precipitate, Q must exceed K_{sp} (5.3x10⁻¹¹) = [Ca²⁺][F⁻]²... 76 18 If $[Ca^{2+}]_{eqm}$ is fixed at 2.0x10⁻³, then to ppt, $[F^-]_{eqm}$ = squareroot (5.3x10⁻¹¹/2.0x10⁻³) = 1.6x10⁻⁴ M \Rightarrow any concentration of F⁻ higher than 1.6x10⁻⁴ M will make Q > K_{sp} & lead to precipitation use K_b and ICE table \Rightarrow solve for x = [OH] = 5.7x10⁻⁴ M... so pH = 14 - pOH = 10.75 18 78a calculate moles of ethanolamine = 2.5x10⁻⁴ mol; in total volume 0.0513 L; so [ethanolamine] = 0.049 M 78b Find $K_a = K_w/K_b = 3.1 \times 10^{-10}$; use ICE table & K_a to solve for $x = [H_3O^+] = 1.2 \times 10^{-6} \text{ M} \Rightarrow \text{pH} = 5.91$ At titration midpoint (half-way to equivalence point), $[HOCH_2CH_2NH_2] = [HOCH_2CH_2NH_3^+]$ 78c therefore $pH = pK_a = 9.51$ 78d methyl red would be a good choice of indicator $K_{sp} = [Sr^{2+}][CO_3^{2-}] = 5.6x10^{-10} \dots = x^2$, where x = solubility of SrCO₃. solve x = 2.4x10^{-5} M 18 80 thus, in 1L, have 3.5 mg of SrCO₃ dissolved in a saturated solution. use H.-H. equation since is a buffer: given pH, can solve for ratio $[HPO_4^{2-}]/[H_2PO_4^{-}] = 3.5$ 18 82 calculate moles H_3O^+ added: 0.0160 mol because added HCl, a strong acid... The total H_3O^+ available can be used to produce HPO₄⁻ (from $H_3O^+ + PO_4^{3-}$) and $H_2PO_4^- (2H_3O^+ + PO_4^{2-})$ Total $H_3O^+ = 0.160 \text{ mol} = (\text{mol} \text{HPO}_4^{2-} + 2 \times \text{mol} H_2PO_4^{-}) = (3.5 \times \text{mol} H_2PO_4^{-} + 2 \times \text{mol} H_2PO_4^{-})$ So use this expression to solve for moles of $H_2PO_4^-$ (now the only unknown...) = 0.010 mol Total mol PO_4^{3-} needed = mol HPO_4^{2-} + mol $H_2PO_4^{-}$ = 0.0029 mol + 0.010 mol = 0.013 mol PO_4^{3-} Convert 0.013 mol Na₃PO₄ into mass: 2.1g

18 86a 0.0123 mol $C_6H_5CO_2H$; 0.0104 mol Na $C_6H_5CO_2$; use H.-H. eqn to solve for buffer's pH: = 4.13 86b to lower pH to 4.00, must additional acid form $C_6H_5CO_2H$. Use H.-H. to find #mol $C_6H_5CO_2H$ needed. Solve for x = 0.017 mol $C_6H_5CO_2H$; but already have 0.0123 mol, so need (0.017-0.0123 mol) more... convert to mass = 0.5g extra $C_6H_5CO_2H$ needed

86c another way to do it would be to add some HCl to the original buffer until reaches pH of 4.00. to predict how much to add: use H.-H. eqn to find required A-/HA ratio = 0.63 $\frac{[C_6H_5CO_2]}{[C_6H_5CO_2]} = \frac{\text{mol } C_6H_5CO_2}{[C_6H_5CO_2]} = 0.63 = 0.0104 - x$

 $[C_6H_5CO_2H] \mod C_6H_6CO_2H \qquad 0.0123 + x \qquad \text{solve for } x, = 0.0016 \mod H_3O^{+} \text{ needed}$ thus: starting with 2.0M HCl, must add 8.2x10⁻⁴ L, or 0.82 mL

- 18 90 $K_{sp} = 4.9x10^{-17} = [Fe^{2^{+}}][OH^{-}]^2 = (0.1)[OH^{-}]^2 \Rightarrow [OH^{-}] required to ppt Fe(OH)_2(s) from soln = 2.2x10^{-8} M K_{sp} = 1.4x10^{-15} = [Pb^{2^{+}}][OH^{-}]^2 = (0.1)[OH^{-}]^2 \Rightarrow [OH^{-}] required to ppt Pb(OH)_2(s) from soln = 1.2x10^{-7} M K_{sp} = 1.3x10^{-33} = [AI^{3^{+}}][OH^{-}]^2 = (0.1)[OH^{-}]^2 \Rightarrow [OH^{-}] required to ppt Al(OH)_3(s) from soln = 2.4x10^{-11} M Thus, Al(OH)_3 will precipitate first, followed by Fe(OH)_2, then Pb(OH)_2$
- 18 92 add the reactions: $Zn(OH)_2(s) + 2 CN^{-}(aq) \rightleftharpoons Zn(CN)_2(s) + 2OH^{-}(aq)$ multiply the eqm constants: $K_{net} = K_{sp}$ (for $Zn(OH)_2) \times K$ (for $2^{nd} rxn = 1/K_{sp}$ for $Zn(CN)_2) = 4x10^{-6}$ Thus: overall, the eqm lies to the left. We can tell that the transformation of zinc hydroxide into zinc cyanide will not occur to a large extent because of the unfavourable (small) equilibrium constant.
- 18 98 Ba(OH)₂ and BaCO₃
- 18 102a HB is a stronger acid than HA
 - 102b A^- is a stronger base than B^- .
- 18 104a As the pH increases, the first ionization equilibrium $H_2CO_3(aq) + H_2O(I) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq)$ shifts to the right and more HCO_3^- is produced. As the pH rises further, the second ionization occurs $HCO_3^-(aq) + H_2O(I) \rightleftharpoons CO_3^{2^-}(aq) + H_3O^+(aq)$ and is shifted to the right with increasing pH, which decreases the amount of HCO_3^- present in the solution.
 - 104b At pH = 6.0, the solution is 72% H_2CO_3 and 28% HCO_3^- . At pH = 10.0, the solution is 66% HCO_3^- and 33% CO_3^{-2-} .
 - 104c A solution buffered at pH = 11.0 should have a HCO_3^{-1} to CO_3^{2-1} ratio of 0.2 to 1.