Concordia University CHEM 221
Dr, C. Rogers, Section 02 Fall 2003

Name: \qquad
ID \#: \qquad

ORGANIC CHEMISTRY I -- W2005 section02

Sample MIDTERM TEST (questions mostly from F2003 MT\#1\&2)

INSTRUCTIONS: This test paper includes 7 pages, 12 questions and a periodic table; check that your paper is complete. Answer all questions inside the boxes provided (except questions $11 \mathrm{~b} \& 12$); information written elsewhere will not be marked. Model kits are allowed. GOOD LUCK!
\#1. (2 Marks) What is the expected hybridization for each of the indicated atoms in this molecule?

\# 2. (2 Marks) Rank the bonds in terms of length for this molecule.
(X longest $\mathbf{D}>\mathrm{B}>\mathrm{A}>\mathrm{C}>\mathrm{E}$ shortest

Of the single bonds: bond with highest s-character is shortest
\#3. (2 Marks) The molecule shown here is oxybutynin, an anticholinergic compound. Which choice represents the list of functional group classes in oxybutynin?
(only 1)
a) $\times 2$ phenyl rings, an amine, an ester, an alkyne, a nitrile $\rightarrow C \equiv N$ (not present)
b) Ka nitrile, a ketone, an alcohol, a phenyl ring, an amine
c) an alkyne, an ester, a phenyl ring, an amine, an alcohol
d) X an acid, an alcohol, a nitrile, an alkyne, 2 phenyl rings
e) a phenyl ring, an amine, an alkyne, a ketone, an ether X

ANSWER:
\qquad $c^{\text {an }}$
\# 4. (2 Marks) How many secondary $\left(2^{\circ}\right)$ carbons are present in this structure?

\# 5. (4 Marks) Draw line structures for the following compounds:
a)

b) trans-1-bromo-3-(1-methylethyl)cyclohexane

Note: could
instead have Br down \& isopropyl up (absolute configuration
 not specified!)
\# 6. (4 Marks) Provide systematic IUPAC names for the following compounds:
a)

b)

cis-1,2-dichlorocyclobutane

CHEM 221 Fall 2003 Section 02 MIDTERM \#1-A
Name: \qquad key
\# 7. (6 Marks) There are many constitutional (structural) isomers with the molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$.
a) In each box, draw one isomer that meets the criteria listed in that box (there are a number of correct possibilities). All atoms should be closed shell (full valence) and uncharged. Te: no formal charges at all

ISOMER A: one 3-atom ring; both oxygen atoms are part of the ring of atoms

ISOMER B: one 3-atom ring; a single oxygen atom is part of the ring of atoms

ISOMER C: one 3 -atom ring; oxygen atoms are not part of the ring of atoms

b) Based on the structures of the molecules, you should be able to confidently predict one of these isomers as being either the most or the least soluble in water. Choose which one you are going to identify, then explain your reasoning.
-

Circle which isomer it is:

A B (C)

Explanation (include sketches of relevant intermolecular interactions):

Isomer C has 2 hydroxyl groups, which can participate in hydrogen bonding with watts in both "H-bond acceptor" (by shavinglone pair) and "H-bond donor" (by "donating" $\delta+H$) modes. Thus, there will be very favourable intermolecular
 attractions between "C" and $\mathrm{H}_{2} \mathrm{O}$, which will make it dissolve easily.
Isomer B can also form H-binds, but the ether group can only accept H -bones, so I expect overall this isomer would be less soluble than C.

CHEM 221 Fall 2003 Section 02 MIDTERM \#1-A Name: answer bey \rightarrow all atoms in same places; only πe^{-s} can move \# 8. a) (3 Marks) There are three other significant resonance contributors for molecule " X " shown below. Draw them in the boxes provided. You do not need to draw the $\mathrm{PF}_{6}{ }^{-}$anion.

b) (3 Marks) Rank the four structures $\mathbf{X}, \mathrm{X}_{\mathrm{a}}, \mathrm{X}_{\mathrm{b}}$, and \mathbf{X}_{c} according to how much they contribute to the real structure of the molecule. Give a reason why the most important contributor is so stable, and why the least important contributor is so unstable.

c) (2 Marks) Considering these resonance contributors, how do you think the molecule "really" looks? In the box on the left, the connectivity in molecule " X " is indicated by dotted lines. Your task is to represent the 3-dimensional (3-D) representation of structure of " X " by writing over the dotted-lines: use lines, dashes and wedges to indicate spatial orientation with respect to the page. Describe this 3-D structure by filling in the blanks in the other box (you can number the atoms in the structure for clarity).

These bond will NOT rotate freely:

$$
\begin{aligned}
& \text { NOT rotate freely: } \\
& N-C, N-C, C-O \quad \text { (bond order }>1 \text {) }
\end{aligned}
$$

These atoms will be in the same plane:

$$
\mathrm{H}_{2} \mathrm{~N}, \mathrm{H}_{2} \mathrm{~N}, \mathrm{C}, \mathrm{O}, \mathrm{C} \text { but NUT the } \mathrm{CH}_{3} \text { 's } \mathrm{H} \text { atoms. }
$$

The reason for this is:

- delocalization of π-electrons over overlapping p-orbitals (extended π-system)
- if rotation occurred, overlap between

P-orbitals would be broken! Requires
should have drawn:

CHEM 221 Fall 2003 Section 02 MIDTERM \#1-A
Name: \qquad
\# 9. (_/4 Marks) CIRCLE YOUR CHOICE. The three staggered forms of 1,2-propanediol are represented here as Newman projections. Taking into account both steric and electrostatic interactions between substituents, rank the conformers according to their relative stability.
\longrightarrow here have iNTRAmolecular H-bonds!
a) most stable III $<$ II $<$ I least stable
b) ${ }^{\text {x }}$ most stable III $<\mathbf{I}<$ II least stable
c) ${ }^{X}$ most stable II $<$ III $<$ I least stable
(d) most stable I $<$ III $<$ II least stable
e) most stable I $<$ II $<$ III least stable

I

\# 10. (_ 3 Marks) CIRCLE YOUR CHOICE. Which structure represents the most stable chair conformation of trans-1-isopropyl-3-methylcyclohexane?
a) $1 \times \mathrm{cis}$
b) 2 trans
c) $3 \times \mathrm{cis}$
(d) 4 trans
 laropst. in equatorial
position.
\# 11. (5 Marks) The structure of glucose includes a six-membered ring. The relative orientations of the ring's substituent has not been shown in the drawing here, but the information in part (a) will allow you to figure it out.
a) In the most stable conformation of glucose, the molecule adopts a chair conformation where all the substituents are equatorial. Draw this conformation (A),
 and show what the molecule would look like in the "flipped" chair conformation (B).

MORE STABLE CHAIR: A all quatorial

b) Draw a planar representation of glucose (like that shown at the top of the question) that shows the dashes and wedges needed to illustrate the relative orientation of the substituents.

CHEM 221 Fall 2003 Section 02 MIDTERM \#1-A Name: answer key
\# 12. (_ 8 Marks) You are asked to prepare 2-bromo-2-methylpropane, starting with an alkane precursor.
a) What reagents and reaction conditions (e.g., hot/cold, light/dark, relative amounts of reagents; we'll learn about solvents later) would you choose? Write a reaction equation that describes your choices.

b) Would a significant amount of undesired products also form? Explain, and identify any undesired products you are talking about and how they would form.
In 2-methyl propane contains $1.3^{\circ} \mathrm{H}$ and $91^{\circ} \mathrm{H}^{\prime} \mathrm{s}$. Bromme radicals are highly selective for $3^{\circ} \mathrm{H}$ atoms, so they will preferentially abstract the $3^{\circ} \mathrm{H}$ to form the desired product. However, because there are $91^{\circ} \mathrm{H}$'s, statistically speaking it is still probable that a small amount of 1-bromo-2-methylpropane will form. However, - it is much more difficult to abstract a $1^{\circ} \mathrm{H}$ because of the inherent instability of 1° radicals, and $B_{r} \cdot$'s are extra info: beyond course scope... not reactive enough to do it frequently. (forbuct distribution: $1^{1}: 9 \times 1.0=9,16 c 9=4 \% \%$
c) Would your answer to (b) be the same if you were talking about preparing 2-methyl-2-chloropropane instead? Explain.

Cl radicals are much more unstable (reactive) than Br radicals, because of their smaller size. Thus, they are less selective for highly substituted abstraction sites, and a product ratio closer to that predicted statistically occurs. For this reason, a much larger amount of 1 -chloro-2-methylpropare would form. In fact, given the $9: 1$ ratio of $1^{\circ}: 3^{\circ} \mathrm{H}^{\prime}$ s in the molecule, the 1° chloride product would probably wen be the major product. this could be predicted fairy accurately using the relative reactivity values for $B r$. vs Cl . truand $10,2^{\circ}, 3^{\circ} \mathrm{H}$, but you ane not responsible for memorizing those numbers! (see section 9.3 if interested)

