CHEM 222 - ORGANIC CHEMISTRY II
MIDTERM EXAMINATION

INSTRUCTIONS: PLEASE READ THIS PAGE WHILE WAITING TO START YOUR EXAM.

This test paper includes 4 pages (both sides) including a periodic table with electronegativities and a page of potentially useful information. Check that your paper is complete. You can remove the last page if you wish. Model kits and calculators are permitted; cell phones and electronic dictionaries are not allowed. You have 70 minutes to complete the test. Read through the whole test quickly before starting. GOOD LUCK.

LAST NAME: _____________________ FIRST NAME: _____________________
STUDENT NUMBER: ________________

Mark breakdown:

Page 2. / 13
Page 3. / 12
Page 4. / 6
Page 5. / 10

TOTAL: / 40 (maximum grade $\frac{41}{40}$)

PERCENT: %

EARNED toward
FINAL GRADE: / 15
1. (6 marks) TRUE or FALSE? Circle T or F to describe the following statements.

T / F If a substance appears green, it likely absorbs in the orange region of the spectrum.

T / F If a carbonyl absorption band appears in a substance’s IR spectrum at <1700 cm⁻¹, it suggests that the C=O bond in the substance is somewhat stronger than the C=O in a typical ketone.

T / F Thiols are more acidic than alcohols because sulfur atoms are larger than oxygen atoms.

T / F Mass spectrometry allows us to determine the molecular weight and the mass of some fragments of a compound.

T / F The stronger the NMR spectrometer’s magnet, the lower the energy of radio waves needed to cause protons to “flip” their spins.

T / F Grignard reagents are best prepared using a protic solvent such as ethanol.

2. (2 marks) Which of the following reagents would be best to convert ethanol to chloroethane in one step?

a) PCC
b) NaCl
c) TsCl
d) SOCl₂
e) Cl₂ / hν

3. (2 marks) What is the product of the following reaction?

\[
\begin{array}{c}
\text{CH₃OCH₂CH₂CH₂CH₂OH} \\
\text{CH₃OH}
\end{array}
\]

a) I
b) II
c) III
d) IV
e) V

4. (3 marks) What is (are) the major product(s) from the following reaction sequence?

\[
\begin{array}{c}
\text{H₃CCH₂CH₂C} \\
\text{OH}
\end{array}
\xrightarrow{1.) \text{PBr₃, pyridine}}
\xrightarrow{2.) \text{NaCN}}
\]

a) I
b) II
c) III
d) IV
e) I and II
f) III and IV
5. (2 marks) Which of the following is/are true about the mass spectrum of 1-bromobutane?
 a) Peaks of approximately equal intensity are observed at m/z 136 and 138.
 b) The major fragmentation occurs by cleavage of the C-Br bond.
 c) The most intense peak occurs at m/z 43.
 d) both a and b
 e) both a and c
 f) all of the above (a, b and c)

6. (2 marks) What compound results when cyclopentanol undergoes oxidation with chromic acid?
 a) cyclopentanone
 b) cyclopentanal
 c) cyclopentanoic acid
 d) cyclopentene
 e) 1,2-cyclopentanediol

7. (2 marks) Which of the following methyl groups would be most deshielded in a 1H NMR experiment?
 a) I
 b) II
 c) III
 d) IV
 e) V

8. (2 marks) Which of the following compounds absorbs the longest wavelengths in the UV/Vis region?
 a) I
 b) II
 c) III
 d) IV
 f) V

9. (4 marks) Which of the following sequences of reactions would work best to convert cyclohexene oxide (shown at right) into propylcyclohexane?
 a) (1) CH₃C≡CNa (2) H₃O⁺
 b) (1) CH₃CH₂CH₂MgBr (2) H₂SO₄, Δ (3) H₂, Pt
 c) (1) H₂O⁺ (2) CH₃C≡CNa
 d) (1) CH₃CH₂CH₂Li (2) HBr
 e) (1) H₃PO₄, Δ (2) CH₃CH₂CH₂MgBr (3) H₃O⁺
10. (6 Marks) Provide a step-by-step mechanism to explain how THF undergoes the following reaction in the presence of excess hydrogen bromide:

\[
\text{\begin{tikzpicture}
 \node [molecule, draw=black, fill=white] (a) at (0,0) {O};
 \node [molecule, draw=black, fill=white] (b) at (1,1) {HBr};
 \node [molecule, draw=black, fill=white] (c) at (2,2) {CH}_2\text{CH}_2\text{CH}_2\text{CH}_2 \text{Br}
 \end{tikzpicture}} \quad \text{heat} \quad \text{\begin{tikzpicture}
 \node [molecule, draw=black, fill=white] (d) at (0,0) {O};
 \node [molecule, draw=black, fill=white] (e) at (1,1) {HBr};
 \node [molecule, draw=black, fill=white] (f) at (2,2) {CH}_2\text{CH}_2\text{CH}_2\text{CH}_2 \text{Br}
 \end{tikzpicture}}
\]
11. (10 marks) Deduce the identity of the compound from the following experimental data. In the tables below, provide a point-form summary of the information you learned from each type of experimental data.

The compound has molecular formula C8H13Br, and it is one of the following five compounds:

- a) CH3CHBrCCC(CH3)3
- b) HCCCH2C(CH3)2CH2CH2Br
- c) 3-bromo-1,2-dimethylcyclohexene
- d) 4-bromo-1,2,4-trimethylcyclopentene
- e) BrCH2CH2CCC(CH3)3

Data:

- IR (selected peak positions in cm⁻¹): 2950, 2150
- ¹H NMR (δ, multiplicity, integral): 3.5 (t, 2H), 1.8 (t, 2H), 0.9 (s, 9H)
- ¹³C NMR: 6 signals

<table>
<thead>
<tr>
<th>Formula</th>
<th>IR data</th>
<th>¹³C NMR data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹H NMR data
EXTRA SPACE FOR ROUGH WORK
POTENTIALLY USEFUL INFORMATION

TABLE OF pK_a VALUES

<table>
<thead>
<tr>
<th>Compound</th>
<th>pK_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$CH$_2$CH$_2$CH$_3$</td>
<td>>51</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>51</td>
</tr>
<tr>
<td>H$_2$C=CH$_2$</td>
<td>44</td>
</tr>
<tr>
<td>CH$_3$NH$_2$</td>
<td>40</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>38</td>
</tr>
<tr>
<td>HCC=CH</td>
<td>25</td>
</tr>
<tr>
<td>(CH$_3$)$_3$COH</td>
<td>19</td>
</tr>
<tr>
<td>CH$_3$CH$_2$OH</td>
<td>17</td>
</tr>
<tr>
<td>CH$_3$OH</td>
<td>15.5</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>15.7</td>
</tr>
<tr>
<td>RNH$_3^+$</td>
<td>9</td>
</tr>
<tr>
<td>H$_2$CO$_3$</td>
<td>6.4</td>
</tr>
<tr>
<td>CH$_3$C18OH</td>
<td>4.7</td>
</tr>
<tr>
<td>HF</td>
<td>3.2</td>
</tr>
<tr>
<td>CH$_3$CH$_2$OH$_2^+$</td>
<td>-2.4</td>
</tr>
<tr>
<td>H$_2$SO$_4$</td>
<td>-5.2</td>
</tr>
<tr>
<td>HCl</td>
<td>-7</td>
</tr>
<tr>
<td>HI</td>
<td>-9</td>
</tr>
</tbody>
</table>

SELECTED SPECTROSCOPIC DATA

<table>
<thead>
<tr>
<th>Type of bond</th>
<th>Wavenumber (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C≡N</td>
<td>2260–2220</td>
</tr>
<tr>
<td>C≡C</td>
<td>2260–2100</td>
</tr>
<tr>
<td>C=C</td>
<td>1680–1600</td>
</tr>
<tr>
<td>C=N</td>
<td>1650–1550</td>
</tr>
<tr>
<td>C=O</td>
<td>~1600 and ~1500–1430</td>
</tr>
<tr>
<td>C—O</td>
<td>1780–1650</td>
</tr>
<tr>
<td>C—O</td>
<td>1250–1050</td>
</tr>
<tr>
<td>C—N</td>
<td>1230–1020</td>
</tr>
<tr>
<td>O—H (alcohol)</td>
<td>3650–3200</td>
</tr>
<tr>
<td>O—H (carboxylic acid)</td>
<td>3300–2500</td>
</tr>
<tr>
<td>N—H</td>
<td>3500–3300</td>
</tr>
<tr>
<td>C—H</td>
<td>3300–2700</td>
</tr>
</tbody>
</table>