
Statistics and Data Analysis 
 
In this guide I will make use of Microsoft Excel in the examples and explanations.  This 
should not be taken as an endorsement of Microsoft or its products.  In fact, there are 
several other spreadsheet packages available, some are better suited to scientific 
calculations than Excel.  Most of you will have access to Excel at home and in the labs. 
If you need an inexpensive spreadsheet program (actually a whole office suite) you can 
try StarOffice produced by Sun Microsystems 
(http://wwws.sun.com/software/product_family/staroffice.html).  I haven’t tried 
StarOffice but the price is about $70.  There is probably an academic discount that would 
make it even less expensive.  Many of the commands won’t be identical to Excel but they 
should be quite close. 
 
In this course we will always use what are known as the double-sided probability tables, 
or two-tailed tables (T-table, F-table etc.).  Probabilities are calculated by integrating the 
area under the Normal (Gaussian) curve where the total area under the curve has been 
normalized to 1.  For example if the integration is from -1σ through to +1σ the integrated 
area is 0.683 and we have a 68.3% probability that any single measurement will fall into 
the region µ ±1σ.  This also means that there is 1-0.683 = 0.317 of the area outside of the 
integration limits.  Half of this area will be above the upper limit and half will be below 
the lower limit of integration.  These two little zones are known as the tails of the 
Gaussian curve. 

Most of the t-tests that we will perform are asking the 
basic question “is there a significant overlap between 
one set of data and the other?”  This is illustrated in 
the figure to the left where the overlap is obvious.  
You can also see that where the two curves meet the 
upper tail (right-hand tail) of Set 1 and the lower tail 
of Set 2 have not been included in the diagram but 
clearly they are involved in the overlapping region! 
By using the two-tailed probability tables for this test 

we will discard these two small pieces that are in the overlapping region.  Most often this 
won’t matter (because the total area in these little tails is so small) but you should be 
aware that it is more appropriate to use the single tail probability tables in this case.  In 
other cases it is appropriate to use the two-tailed probability tables.  The tests are the 
same in both cases and the results will be largely the same except the level of confidence 
will change.  So…  WHILE YOU ARE LEARNING TO USE STATISTICAL TESTS IN 
THIS CLASS IT IS ACCEPTABLE TO ALWAYS USE THE TWO-TAILED TABLES.  
In the future, you should be careful and consult a good statistics text to verify that you are 
using the correct probability tables. 
 
 

Set 1 Set 2

Values



Basic Statistical Concepts  
 

Mean Value 
The mean value is the value that we EXPECT all of our data to equal.  For large data sets 
we can calculate the mean value.  For smaller data sets we can only estimate the mean 
value.  The mean value is calculated by: 
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For a smaller data set we can calculate the average value and we use the same formula 
except that we use the symbol x  rather than µ and that N is a finite number.  In practice 
x  approaches µ as N reaches 20-30.   
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Standard Deviation 
 
The standard deviation, or the standard error, is a convenient number that measures how 
far away from the expected value any individual measurement is likely to be.  The larger 
the value of the standard deviation is the larger the “scatter” in the data set.  For large sets 
of data it is possible to calculate the standard deviation of the population.  Another term 
that is often used in statistical calculations is the variance that is simply the standard 
deviation squared. 
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The explanation of this equation is quite simple.  It is the sum of all of the differences 
(between the individual measurements and the expected value) divided by the degrees of 
freedom (N).  Effectively, it is similar to the average difference (though, if you examine 
the equation carefully you will see it is NOT the average difference).  When dealing with 
a real data set some of the differences will be positive, some will be negative, they will 
sum to zero.  To correct for this problem the differences, or errors, are squared, summed 
and then the root is taken. 
 
 



In most practical situations we do not collect enough data to calculate the population 
standard deviation.  Instead, we calculate our best estimate of the standard deviation and 
we call it the sample standard deviation. 
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Again, we see that it is the root of the sum of the errors squared divided by the number of 
degrees of freedom.  The degrees of freedom are explained below. 
 

Statistical Tests and Calculations 
 

Confidence intervals 
 
In nearly all of our measurements we do not take sufficient data to actually calculate the 
population mean or standard deviation.  This is simply a matter of expediency because it 
would require many measurements and would take an enormous amount of time and 
effort.  Luckily, we can predict a range of values that will include the population mean if 
we have several sample measurements.  We can also predict the size of the population 
standard deviation even if we only have a sample standard deviation.   
However, as a consequence of this expediency our predictions are not always correct.  
The level of risk is associated with the level of confidence.  When a 95% confidence 
level is chosen, your prediction of the range of values that contains the mean will be 
correct 95% of the time.  If you aren’t lucky your prediction will be wrong! 
 
CASE 1 
 
We want to know the range of values that the population mean will be found in given that 
we have a single sample measurement and the population standard deviation.  We must 
make the assumption that σ also applies to our measurement (this is a bit risky). 
 
We have σ from many other analyses.  
We have x from our experiment. 
 
From the math of the normal (Gaussian) distribution we can predict that: 
68.3% of the time x will be within one σ of µ 
95.5% of the time x will be within two σ of µ 
99.7% of the time x will be within three σ of µ 
 
  µ = x ± zσ  where z is chosen by you. 

Equation 5 



 
CASE 2 
 
We repeat our experiment N times. 
 
Recall that in the limit µ → ∞→Nx .  If the variation is due to random sources the 

average ( x ) will approach the mean (µ) as 
N
1 .  This means that our average is even 

more likely to be closer to µ than was our single measurement in CASE 1.  In fact 
 
68.3% of the time x  will be within one Nσ  of µ 
95.5% of the time x  will be within two Nσ  of µ 
99.7% of the time x  will be within three Nσ  of µ 
 
i.e.   µ = x  ± z Nσ   where z is chosen by you. 

Equation 6 

 
Later you will see that z is in fact just a special circumstance of the more general t 
statistic.  For now, z is the number of standard deviations. 
 
Now you can see the advantage of taking a few measurements.  They significantly tighten 
the range of values that we can expect to find the mean value in. 
 
CASE 3 (MOST REALISTIC) 
 
Most often we don’t know σ and only have s.  In the limit σ → ∞→Ns , for smaller 
numbers of N we have to be cautious and realize that s may underestimate σ.  To 
compensate we use the t statistic so once again we have  
 
68.3% of the time x  will be within one Nts of µ 
95.5% of the time x  will be within two Nts  of µ 
99.7% of the time x  will be within three Nts  of µ 
 
i.e.   µ = x  ± Nts   where t is chosen by you. 

Equation 7 

 
The value of t can be found in the Students t-table.  They are sorted according to the level 
of confidence and the number of degrees of freedom.   
 



Statistical Tests 
 

F Test 
 

All of the following t-tests look for differences in the mean values between two sets of 
data.  To perform these tests requires that the precisions (σ or s) are similar for the two 
test populations.  To test if this is true use the F test. 

 
Fcalc = Sa

2/Sb
2    Where Sa > Sb 

Equation 8 

 
If Fcalc > Ftable the variances are too different and the two populations cannot be compared 
with the student t tests.  Otherwise they are similar enough to continue testing. 
 
 

T Statistic 
 
The Students t statistic is very useful in data analysis and is used quite extensively in 
analytical chemistry.  Intuitively, we know that if we have a population and we take a 
small number of samples from the population and calculate the average value it should be 
close to the mean value.  The real question is, how close?  The values of t in the students 
t-table can be used to answer that question.  We can calculate a value for t using the data 
and then compare it to the table value.  The table values can be thought of as the 
maximum allowable difference between the average of a small set of data and the 
population mean. 
 
We have the familiar  

µ = x  ± z Nσ  

Equation 9  

Rearranged/modified to 
 
     zcalc = tcalc = σµ Nx )( −  

Equation 10 

 
Here you see that tcalc is related to x -µ, or the difference between the measured and 
expected means. 
 
Always use the positive value of t since the tables are for the positive value! 
 



T Tests 
 
CASE 1:  Where µ and σ are both well known (certified reference material or quality 
control) and we have an experiment with N measurements. 
 
We rearrange µ = x  ± Nts  to 
   ± tcalc = σµ Nx )( −  
 
and calculate tcalc from the experimental data.  If tcalc is greater than ttable then our data is 
too far away (i.e. (x-µ) is too large) to be due to random error (σ) alone.  If tcalc is less 
than or equal to the tabulated value, the difference (x-µ) could be due to the amount of 
noise (error, variation) in the experiment and we predict that there is no difference 
between x and µ.   
 
CASE 2:  Where σ is well known and we want to compare the results of two experiments 
with x a, Na, x b and Nb. 
 

  ± tcalc = [( x a– x b)/σ]
NbNa
NbNa

+
⋅  

 
Calculate t from the experimental data.  If tcalc is greater than ttable then the difference in 
the two sets of data is too great ( x a– x b is too large) to be due to random error (σ) alone.  
If tcalc is less than or equal to ttable the difference ( x a– x b) could be due to the amount of 
noise (error, variation) in the experiments. 
 
CASE 3: Where σ is NOT well known and we want to compare the results of two 
experiments with x a, Na, x b and Nb.  THIS IS THE MOST COMMON CASE. 
 

  ± tcalc = [( x a– x b)/Spool] NbNa
NbNa

+
⋅  
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Equation 11 

A more easily calculated version is 
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Q-TEST 
 
Q Test: Can we throw out a piece of bad data? 
 
 Qcalc = gap/range  =  (Questionable data – closest neighbor)/(biggest – smallest) 

Equation 13 

 
 
If Qcalc > Qtable then the “questionable” data point is too far away from the other data and 
can be removed. 
 
Most spreadsheets do not calculate the rejection quotient (Q) so I have prepared the 
following table for you. 
 

 Level of confidence 
Number of 

Measurements 
90% 95% 99% 

3 0.941 0.970 0.994 
4 0.765 0.829 0.926 
5 0.642 0.710 0.821 
6 0.560 0.625 0.740 
7 0.507 0.568 0.680 
8 0.468 0.526 0.634 
9 0.437 0.493 0.598 
10 0.412 0.466 0.568 
15 0.338 0.384 0.475 
20 0.300 0.342 0.425 
30 0.260 0.298 0.372 

 



Detection Limit 
The detection limit is the smallest signal, or concentration, that is statistically larger than 
the blank signal, or concentration.  It is useful to know this value because it sets the lower 
limit of the signals, or concentrations, that can be reported.  For example if you have 
determined that the detection limit is 20 PPM and one of your samples calculates out to 
be 15 PPM you must report that no analyte was detected for that sample since the 
calculated value falls below the detection limit!   
 
The detection limit equation can be derived from the following simple example:  
A samples’ signal comprises two parts, the first part is due to the presence of analyte and 
the second is from non-analyte species (blank).  All of our measurements are subject to 
noise including the blank measurement. Thus: 
 
  Blank measurement  Sig = Sigblk ±σblk 
 
From our knowledge of the Normal distribution we know that 68.3% of the time (our 
level of confidence) any blank measurement will be within 1 σblk of Sigblk.  The converse 
is also true, the blank signal will be larger than Sigblk + 1σblk only 15.85 % of the time 
([100-68.3]/2  divide by two since only larger signals apply).  We can extend this 
reasoning to any level of confidence that we desire by consulting the Student’s t table and 
looking up the appropriate level of confidence.  Now, if we want to measure a signal that 
we can say is statistically larger than the blank we know that the signal must be larger 
than: 
 
  Signal at detection limit Sig@DL = Sigblk + kσblk 
 
Notice the ± has been replaced by +, this means that the signal is larger than the blank! 
k is an appropriate number of “sigmas” that will give you the desired degree of 
confidence.  Most often k is chosen as 3 to give XX% (you look it up!) confidence that 
the signal that has just been measured is not the same as the blank. 
 
Converting the signal at the detection limit to a concentration detection limit. 
 
Using the calibration general formula: 
 
   Concentration = (Signal - signalblk)/slope 
 
We substitute in the equation for the signal at the detection limit. 
   Concentration@DL  = (Sigblk + kσblk - signalblk)/slope 
    Conc@DL  =  kσblk/slope 
 
There are quite a few assumptions in defining the detection limit this way and some do 
not agree that this is a “good” definition.  However it is a useful guide and can help the 
analyst “get a feel” for the practical lower range of concentrations. 



Linear Regression 
 
Most of the measurements that we take in analytical chemistry do not yield the final 
result directly.  Most often a signal is measured that is proportional to the amount of 
analyte present.  We calibrate the instrument using standards of known concentration or 
amount of analyte in order to establish the relationship between the signal and 
concentration. 
 
Thus we have  Signal = sensitivity x concentration + blank signal 
   Sig = sens. x [analyte] + blank 
 
Which is in the same form as:   y = mx + b  
 
The slope and the intercept of the line can be determined graphically by using your best 
judgment and drawing a strait line through the data and calculating the slope and 
intercept from this line.  There is, not too surprisingly, a better way than this and it is 
called the least squares method.  Most hand calculators and spreadsheets are capable of 
doing this calculation. 
 
The Appendix details the method of calculating these parameters using Excel, here is the 
mathematical model used for those calculations. 
 
We have a data set that is composed of signals (y values) and concentrations (x values).   
 
First we calculate a few intermediate values for convenience sake. 
  Sxx = 2)(∑ − xxi  

Equation 14 

  Syy = 2)(∑ − yyi  

Equation 15 

  Sxy = )()( yyxx ii −−∑  

Equation 16 

Where x  and y are the averages of the entire set of x and y values respectively. 
 
From this data set we can calculate the following calibration curve numbers. 
  Slope = m = Sxy/Sxx 

Equation 17 

 
  Intercept = b = y -m x  

Equation 18 



 
In an ideal case all of the measured signals will all satisfy the equation and when they are 
plotted all of the data will fall onto the line.  In the real world there is random noise 
(uncertainty, error) in our measurements and all of the data will not sit on the line.  This 
uncertainty in the measurement of the standards leads to an uncertainty in any value 
calculated using the linear least squares line.  The equations necessary to calculate the 
uncertainty are presented next. 
 
 
 
The first thing we need to get a handle on is the magnitude of the scatter of the data 
“away” from the line.  We will use the same general idea of a standard deviation that we 
used for single data sets except it will be known as the standard deviation about the 
regression.  The standard deviation about the regression follows the general form for 
standard deviations (i.e. the root of: the sum of [the actual value (yi) minus the expected 
value (b+mxi)]2 divided by the degrees of freedom). 
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This value allows us to calculate an uncertainty in our estimate of the slope and the 
intercept. 
 
The standard deviation of the slope 
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Equation 20 

 
The standard deviation of the intercept 
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Equation 21 

 



 
With these values of the standard deviations it is possible to calculate the standard 
deviation in a calculated result. 
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Equation 22 

Where  m is the calculated slope 
  M is the number of number of measurements of the unknown 
  N is the number of measurements that are used to calibrate 
  cy  is the average signal of the M unknown measurements 

  y  is the average of all of the signals used in the calibration 
 
 
Now you must calculate the confidence interval on the calculated result(s). 
 
 
We have our general equation (Equation 7) that estimates the range of values that the true 
value can be found in: 
 
 

µ = x  ± Nts  
in our case we will use the same notation as equation 22: 
 

µ = x  ± Mtsc  Where M is the number of unknown 
measurements. 

 
The real sticky question is: how many degrees of freedom to use when looking up t? 
 
Remember that when we use our calibration data (N measurements) set to determine the 
concentration of an unknown (M measurements) we are saying that the unknown belongs 
in the same data set as the calibration data.  This implies that we start with M + N degrees 
of freedom.  One degree is transferred (lost) every time we must use our calibration (or 
unknown) signal data. 
 
In our calculation of Sc we have calculated m, Sr, cy  and y .  On the first glance it would 
appear that we lose 4 degrees from the M+N total degrees.  However, this is not the case 
if you examine how Sr is calculated you will see (second half of Equation 19) that we 
already have m and yyS uses y  and other values that don’t require the calibration data set.  
So, we can avoid losing a degree of freedom due to the calculation of Sr.  In short we 
have N-2 (m and y ) plus M-1 ( cy ) or M+N-3 degrees of freedom!!  Now go look it up in 
the table!! 



Linear regression with Excel 
 
Many of the Excel functions that we are going to use are not installed by default when 
Excel is first installed on a computer.  You will have to install the Analysis Tool-Pak to 
have access to functions that are useful for working with and analyzing data.  To install 
the Tool-Pak start Excel, choose TOOLS\Add-Ins then select Analysis Tool-Pak.  Follow 
the installation instructions.  In principle the Analysis Tool-Pak needs to be installed only 
once, occasionally though it “disappears” and will need to be reinstalled.  Don’t blame 
me, blame Bill Gates! 
 
If you don’t know how to enter data, equations, copy data etc in Excel check out the 
Appendix to this Guide. 
 
 

Data Work-up 
Place your data in the spreadsheet, one column for your independent variable (usually 
concentration) another column for the dependant variable (signal).  It should look 
something like: 
 
Concentration 
of Standard 

Signal data from 
stds 

0.00 3.07
0.00 2.79
0.00 2.90
1.00 8.52
1.00 9.88
1.00 8.44
2.00 16.47
2.00 15.19

More data… 
 
 
Choose TOOLS\DATA ANALYSIS select regression.  A dialog box will open.  Select 
the dependant data as the Y-Input Range, the independent data as the X-Input-Range.  
Select Output Range and choose an empty place in your spreadsheet to put the 
Regression output.  The cell that you choose will be the top left corner of the output.  For 
the demonstration below I checked the Residuals box to calculate the residuals, normally 
you won’t need the residuals. 
 



 
For the data set that I used the Regression output looked like: 
 

   
SUMMARY OUTPUT  

   
Regression Statistics  

Multiple R 0.9964  
R Square 0.99282  
Adjusted R 
Square 

0.99256  

Standard 
Error 

0.92615 ����This is useful  

Observations 30  
   

ANOVA   
 df SS MS F Significance F  

Regression 1 3320.37 3320.37 3870.99 1.5E-31  
Residual 28 24.0173 0.85776  
Total 29 3344.39  

   
   
   

 Coefficients Standard 
Error 

t Stat P-value Lower 95% Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 2.9176 0.29977 9.73287 1.7E-10 2.30355 3.53164 2.30355 3.53164
X Variable 1 6.16012 0.09901 62.2172 1.5E-31 5.95731 6.36294 5.95731 6.36294

   
   
   

RESIDUAL 
OUTPUT 

  

   
Observation Predicted Y Residuals  

1 2.9176 0.15178  
2 2.9176 -0.1308  
3 2.9176 -0.0158  
4 2.9176 -0.1228  
5 2.9176 0.08558  

I HAVE CHOPPED OUT A BUNCH OF ROWS HERE 
27 33.7182 -0.978   
28 33.7182 1.50713   
29 33.7182 -1.3837   
30 33.7182 0.6377   

    
    

 



Useful numbers from the Regression output: 
 
Intercept coefficient is, well… you guessed it, the intercept! 
X Variable 1 coefficient is the slope of the curve. 
Standard error of the intercept is the estimate of the standard deviation on the 
intercept. 
Standard error of the x-variable is the estimate of the standard deviation of the 
slope. 
Standard error is the standard error of the regression (Sr) 
 
 

The following example shows that the standard error is actually the standard deviation 
about the regression. 
 
To obtain an estimate of the standard deviation of the regression or the standard deviation 
that can be expected in all signal measurements (equation a1-34 in Skoog or equation 5-7 
in Harris 5th) you must determine the difference between the individual data points and 
the calibration curve (expected value).  Do this by summing the squares of the residuals, 
dividing by the remaining degrees of freedom N-2 (in the data set I have N-2 = 28), take 
the square root and then sum the column.  Notice that this is equal to the standard error 
reported in the summary output. 
 

My data looks like: 
RESIDUAL OUTPUT 

  
Observation Predicted Y Residuals (Risid)^2 

1 2.917597 0.151783 0.023038
2 2.917597 -0.13077 0.0171
3 2.917597 -0.01576 0.000248

I CHOPPED OUT SOME DATA HERE TO SAVE SPACE
27 33.71822 -0.97798 0.956448
28 33.71822 1.507129 2.271438
29 33.71822 -1.38366 1.914527
30 33.71822 0.637703 0.406665

  
 Estimated  
 Standard deviation Sr 0.926153

=SQRT(SUM(Data)/28)) 
 



If you don’t have the tool pack for linear regression you can use the built in linear 
regression function (LINEST) in Excel.  Use the Excel help function to get instructions 
on how to enter array functions.  There is a trick for entering the function. 
 

1. Highlight an empty block of cells (where it will give you the results) 5 rows by 2 
columns.  

2. Type    =linest(startY:endY,startX:endX,true,true)    in the formula bar.  It should 
look like: 

 

 
 
3. Hit CTRL + SHIFT + ENTER all at the same time and Excel will calculate the 

linear regression.  Each of the cells in the 5X2 block contains a regression 
parameter.  Your results should look like these: 

 

 
 
the output block is arranged as: 

slope intercept 
s_dev slope s_dev inter 
R_squared Std_err_of_Y 
F_stat degrees'o_free 
  (sum of resid)^2

 



Calculating the unknown concentration and its uncertainty. 
Our calibration curve is: 
 

Signal = Slope * Concentration + Intercept 
 

Which rearranges to: 
 
Concentration = (Signal – Intercept)/Slope 
 

Calculate the average unknown concentration using the average unknown signal and the 
values for slope and intercept. 

 
To calculate the uncertainty we apply Equation 22.  We don’t have all of the terms 
directly from the output of the spreadsheet but they are all easily calculated. 
 

cy  is the average signal of the M unknown measurements 
y  is the average of all of the signals used in the calibration 
m, M and N are known 
Sr is reported in the Regression Summary 
 
Sxx is readily available by rearranging Equation 20, the standard deviation of the slope 
and the standard error are known. 

 

Substitute the terms into Sc = 
xx
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3) Apply a suitable confidence interval now that you have the uncertainty. 
 

The true (mean) unknown concentration = [Unknown] ± t σUnknown/√N 
 

Where N is the number of replicate measurements of the unknown. 
 
 
This method of calculating the concentration and error makes a couple of 
assumptions.  The largest assumption, that you should be aware of, is that the 
sample is a member of the same population as the standards (i.e. a sample and a 
standard of the same concentration would give the same signal AND would have 
the same standard deviation σ).  Making this assumption allows us to use the error 
data from the calibration data in our error propagation rather than the measured 
sample standard deviation.  If this is not the case then we have to abandon our 
Equation 22 for a more complex method. 



 

Appendix (Basics of how a spreadsheet works) 
 
 
This Appendix is designed for those of you who are new to spreadsheets and are 
unfamiliar with how they work.  If you’ve used one before this is probably too simple an 
introduction. 
 
You can think of a spreadsheet as a two dimensional matrix, each cell in the matrix may 
contain (store) a number, text or a formula.  The individual cells have unique addresses 
that are determined by the combination of the row and column numbers.  The most 
powerful feature of the spreadsheet is that formulas can take data in other cells (or results 
from other calculations) and use them in their calculations.  To “get” the value from 
another cell and use it in a calculation you use the address of the cell in the formula rather 
than the numerical value displayed (stored) in the cell.  This allows you to perform long 
complex calculations as a series of smaller intermediate calculations that are easily 
checked.  It also allows you to fix data entry errors by changing the values in the cells 
that contain the data, all of the calculations will automatically update.  Sweet huh? 
 
Entering data into a spreadsheet 
You can enter data directly into the individual cells of the spreadsheet by using the mouse 
to select a cell (note that it becomes highlighted along with its row and column index).  In 
this case, cell C7 is selected.  You can use the number pad on the right of the keyboard to 
enter the values you want.  Note you must have Num Lock on (top left key on the number 
pad, the NUM at the bottom right of the spreadsheet tells you Num Lock in on) 
Most often it works out best if you enter your data in a column rather than a row.  You 
can choose any column you like. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
For this example, let’s put in 1 to 10.  Give the column of data a name (Concentration 
(ppm)) so that it will be easier to remember in the future.  Notice that the words are wider 
than the column, so long as nothing is put into cell C7 the full text will be displayed.  If 
text is being overwritten you can adjust the width of the column by moving the mouse 
pointer to the top of the column, in-between the B and C.  The cursor should change to a 
line with two arrowheads.  Use the left mouse button to “grab” the column width and 
drag it to the right so that it contains all of the text, this won’t affect any calculations. 
 

 
 



 
Next, enter some data.  In this case I have made up some experimental linear data 
 

 
 
Notice how the Signal label has “overwritten” the Concentration label. 
 
Notice the formula bar (little window at the top) contains the formula that I used to 
generate the data.   
 
To perform a linear regression on the data, choose TOOLS\DATA ANALYSIS select 
regression.  The following box should open.  You will have to scroll down to select 
Regression 

 



 
 
The following dialog box will open. 

 
 
Select the dependant data as the Y-Input Range, the independent data as the X-Input-
Range.  Do this by clicking on the red arrow beside the data window.  This will minimize 
the Regression window and allow you to select a block of data from the spreadsheet.  
Select the start of the block of data (holding down left mouse button) to the end of the 
data.  Once you have selected the block of data hit ENTER. 
 
Do this for both the dependant and independent data blocks 
 

 



 
Select Output Range and choose an empty place in your spreadsheet to put the 
Regression output.  The cell that you choose will be the top left corner of the output.  In 
this case I chose cell E10. 

 
 
 
Select OK and the regression will be performed and the output placed in the spreadsheet. 

 
 
Notice that the intercept is the same the value that I used in the formula (cell I7) and the 
slope is identical to cell I8. 



Entering formula 
 
Formulas can be entered directly into the cells of the spreadsheet.  This is particularly 
useful if the data that you collect must be transformed (linearized) before you can plot or 
calculate the slope and intercept.  Alternatively, you can choose the type of formula that 
you would like to use and a pop-up window will open and “help” you through the process 
of filling in all of the important values.  Two examples are shown below. 
 
Manual formula entry 
 
Below is an example that uses the %T signal collected from an absorbance 
spectrophotometer. 

 
As you can see from the figure on the right, %T is NOT proportional to concentration 
 
To linearize the data we transform the %T into absorbance values using the following 
equation. 
 
  Abs = -log(%T/100) 
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To have Excel calculate this for you move the cursor to an empty cell (use the same row 
as the data) and type in the following: 
 
   =-log(address/100) 
 

• The = sign lets Excel know that the following text is a formula.  You can also use 
a + sign and Excel will insert a = in front for you 

• - is the negative of the value calculated 
• log is a reserved word for the log function.  There is a full range of functions to 

choose from, they can be found by going to Insert/functions.  A dialog box will 
open that will allow you to select the type of function that you want. 

• address is the cell address of the data that you want to use in the calculation.  In 
the example that I am using it is cell H14.  We divide by 100 to remove the 
percentage. 

 
The cell should now contain: 
 
   =-log(H14/100) 
 
Once you hit enter it will calculate and display the value (the formula is still there 
though). 
 
Common functions and their Excel syntax 
 
Function Excel syntax Example 
Sum sum(start_add.:end_add.) =SUM(B7:B15) 
Average average(start_add.:end_add.) =AVERAGE(B7:B17) 
Sample standard deviation stdev(start_add.:end_add.) =STDEV(B7:B15) 
Student’s T value Note 1 tinv(probability,deg. of free) =TINV(0.01,12) 
 

1) The probability is actually = (1-the level of confidence).  So for a 95% confidence 
level the probability is 0.05.  You can also check to see if you are calculating the 
t-value correctly by comparing your results to those in the printed table! 

 
 



 

Copying and Pasting & Relative Addressing 
 
Rather than typing the formula into each cell you can copy the formula to adjacent cells.  
As Excel pastes the formula into the new cells it UPATES the addresses. 
 

 
 
Notice how the formula in cell J16 uses the contents of H16 in its calculation!  This will 
be true for all of the formulas, they all use the corresponding cell in the H column.  This 
automatic updating of the formula is known as Relative Addressing since the formula 
always uses the data that is in the cell relative to its own position.  In this case two cells 
to the left. 

Absolute addressing 
 
Let’s say that we want to subtract a constant from all of the data (for example a blank 
subtraction).  You can setup a column that contains the constant or you can use absolute 
addressing in your formula rather than relative addressing.  To force the formula to 
always use the contents of a given cell use the $ before (and n) the cell address. 
 
In our example we will subtract the blank signal from all of the measurements. 
 



 
 
Notice that the formula is a mixture of relative and absolute addressing.  For the cell 
highlighted 
 

J17 (relative address)-$J$14 (absolute address) = 0.24 (calculated value) 
 
 
The $ before the J forces Excel to always use column J and the $ before 14 always forces 
row 14 to be used. 
 
 


